DEGLYCO-BLEOMYCIN-IRON COMPLEXES: IMPLICATIONS FOR IRON-BINDING SITE AND ROLE OF THE SUGAR PORTION IN BLEOMYCIN ANTIBIOTICS

Sir:

The oxidation of bleomycin (BLM)-Fe-DNA complex by molecular oxygen leads to damage of DNA.^{1,2)} This activity is related to the bifunctionality of BLM, namely DNA- and iron-binding. The bithiazole and terminal amine residues contribute toward the binding to DNA^{3,4}) and the pyrimidoblamyl-\beta-hydroxyhistidyl portion (the amino acid residue containing pyrimidine is called pyrimidoblamic acid) is involved in chelation with metal ions.^{2,5,6)} From ¹H NMR analysis of a diamagnetic BLM-Fe(II)-CO adduct, the carbamoyl group on the 3-position of mannose was proposed to be one coordination donor group toward the ferrous ion, in conjunction with carbon monoxide, the primary and secondary amine nitrogens, the pyrimidine N-1 and the imidazole N-1.7) However, this model has several drawbacks. The proposed 5-5-9 chelate ring member and the coordination of the carbamoyl amide nitrogen are considered to be unlikely, because certain spectroscopic properties⁸⁾ and the binding of oxygen antagonists (CO, NO, and $C_2H_5NC)^{(9)}$ similar to hemoproteins strongly

suggest a rigid chelate conformation of the BLMiron complex. Our potentiometric study showed one proton dissociation ($pK_c=5.5$) from the peptide backbone group in the BLM-Fe(II)-complexation.¹⁰⁾ In addition, the ESR results of the BLM-Co(II) complex and its dioxygen adduct revealed that the primary amino nitrogen is the fifth axial donor atom.¹¹⁾

In this paper, deglyco-BLM was used to clarify the role of the sugar portion for the coordination and O_2 -activation of "active BLM-Fe(II) complex species". Deglyco-BLM lacks the sugar moiety in BLM molecule.

Deglyco-BLM was obtained from the culture broth of BLM fermentation and also from the mild acid hydrolysate of BLM.12) Recently, the total chemical synthesis of deglyco-BLM-A₂ was achieved by us.13) The 1:1 deglyco-BLM-Fe(II) complex was prepared by mixing deglyco-BLM and Fe(II) ion in aqueous solution (pH 6.9) containing a small amount of NaBH4 under the condition of total deaeration. The Fe(II)-NO (or CO) adducts of deglyco-BLM and BLM were prepared by addition of a few milligrams of NaNO₂ (or CO gas) and sodium borohydride to the Fe(II) complexes. Spin-trapping experiments using *N*-tert-butyl- α -phenylnitrone were carried out according to the previously reported procedure.⁸⁾ X-Band ESR(sample conc.: 1 mм) and 220 MHz FT-1H NMR (10 mM) spectra were

recorded using a JES-FE-3X and a Varian HR-220 spectrometer, respectively.

The visible spectral constants of the deglyco-BLM-Fe(II) complexes with oxygen analogues are very similar to those of the corresponding BLM-Fe(II) complexes⁹⁾: deglyco-BLM-Fe(II) complex, λ_{max} 472 nm (ε 300); deglyco-BLM-Fe-(II)-CO adduct, 380 nm(2800); and deglyco-BLM-Fe(II)-NO adduct, 475 nm(2200). Fig. 1 shows the ESR spectra of the deglyco-BLM-Fe(II)-NO adduct(A) and the deglyco-BLM-Fe(III) complex (B). The ESR parameters obtained for these iron complexes are close to those for the corresponding BLM complexes. Table 1 summarizes the ESR parameters for the Fe(II)-NO and Fe (III) complexes of deglyco-BLM, BLM, iso-BLM, P-3A(a biosynthetic intermediate of BLM), and depyruvamide(dep)-BLM.⁸⁾ The results strongly indicate that (1) the pyrimidoblamyl- β -hydroxyhistidyl portion is substantially important for Fe(II) and Fe(III) coordination to BLM ligands and (2) the sugar portion is not participating as a direct ligand in the iron binding. As demonstrated in BLM-Fe(II)-NO complex,14,15) the addition of DNA to deglyco-BLM-Fe(II)-NO complex also induced a greater separation of the g_x and g_y absorptions in comparison with the original ESR spectrum, suggesting increased inplane anisotropy in the Fe(II) site by the interaction between deglyco-BLM and DNA. Of special interest is the fact that the g_x value (2.060) of Fig. 1. ESR spectra of deglyco-BLM-Fe(II)-¹⁴NO complex(A) and deglyco-BLM-Fe(III) complex(B) at 77 K.

BLM-Fe(II)-NO-DNA complex is larger than that (2.046) of the corresponding deglyco-BLM complex. An interaction such as the hydrogen bond between the sugar of BLM and DNA, in this case, may be responsible for the larger g_x

Table 1. ESR parameters for iron(II)-nitrosyl and iron(III) complexes of deglyco-bleomycin and its related compounds.

Complex	g _x	gy	gz	A ^N , G	Nitrogen hfs
Deglyco-BLM-Fe(II)-14NO	2.038	1.969	2.007	24.8	3
Deglyco-BLM-Fe(II)-15NO	2.038	1.970	2.007	33.0	2
BLM-Fe(II)-14NO	2.041	1.976	2.008	23.6	3
BLM-Fe(II)-15NO	2.041	1.976	2.008	31.6	2
Iso-BLM-Fe(II)-14NO	2.040	1.976	2.008	23.6	3
P-3A-Fe(II)-14NO	2.038	1.968	2.007	24.8	3
Dep-BLM-Fe(II)-14NO	2.052	2.016	1.999	17.5	3
Deglyco-BLM-Fe(II)-14NO-DNA	2.046	1.963	2.007	25.1	3
BLM-Fe(II)-14NO-DNA	2.060	1.962	2.006	24.0	3
Deglyco-BLM-Fe(III)	1.887	2.180	2.432		
BLM-Fe(III)	1.893	2.185	2.431		
Iso-BLM-Fe(III)	1.892	2.185	2.430		
P-3A-Fe(III)	1.887	2.179	2.434		
Dep-BLM-Fe(III)		g=4.28			

Complex	Proton chemical shift (ppm relative to TSP)						
BLM-Fe(II)	47.4	45.1	42.9	34.7	23.8	20.6	15.1
Iso-BLM-Fe(II)	48.0	45.6	43.7	35.3	24.6	21.2	14.2
Deglyco-BLM-Fe(II)	47.7	40.6	22.4	17.0	11.6		
Dep-BLM-Fe(II)	38.0	34.8	28.6	27.0	17.7		
Dep-BLM-Fe(II)-2 · MeIm	52.9	49.1	35.4	32.4	20.4		
$Dep-BLM-Fe(II)-NH_8$	46.7	40.8	33.8	31.1	14.9		

Table 2. Proton paramagnetic shifts for iron (II) complexes of bleomycin and related compounds.

TSP: Sodium 3-(trimethylsilyl)propionate- d_4 .

Table 3. Proton chemical shifts for Fe(II)-CO adduct complexes of deglyco-bleomycin and bleomycin.

	Proton chemical shifts (ppm relative to TSP)						
	Deglyco-BLM (pD 7.7)	Deglyco-BLM-Fe(II)-CO (pD 7.7)	BLM (pD 7.2)	BLM-Fe(II)-CO (pD 7.2)			
Bithiazole protons	8.20, 7.99	8.19, 8.01	8.18, 7.99	8.18, 8.01			
Hydroxyhistidine							
С2-Н	7.71	8.47	7.82	8.55			
C4–H	7.15	7.26	7.30	7.43			
β -Aminoalanine							
CH	3.98	3.88	3.98	3.84			
CH ₂	2.97	2.93, 2.62	2.99	2.93, 2.64			
Pyrimidine CH ₃	2.02	2.39	1.99	2.38			
α -Methylvalerate α , δ -CH ₃	1.14	1.12	1.15	1.11			

separation. The ESR features of deglyco-BLM-Fe(III) complex are typical of a rhombic lowspin type and the estimated g-values were much the same as those of the BLM-Fe(III) complex. The similarity of the ESR parameters for the lowspin Fe(III) complexes between the BLM ligand and hemoprotein indicates that the iron ligand donors in BLM are arranged in a rigid conformation, as in the case of heme. Indeed, it has been proposed that BLM-Fe(III) complex has a rigid square-pyramidal arrangement with 5-5-5-6ring member.⁸⁾ Macrocyclic ferric thiolate Fe (III)N₄SR also possesses low-spin(S=1/2) for 6565 ring size complex and inermediate-spin(S= 3/2) for 6566 complex.¹⁶⁾

Deglyco-BLM-Co(II) complex showed a typical low-spin ESR spectrum ($g_{\perp}=2.277$, $g_{\parallel}=2.027$, $A_{\parallel}^{Co}=95.0$ G, and $A_{\parallel}^{N}=14$ G) and the ESR feature closely resembles that ($g_{\perp}=2.272$, $g_{\parallel}=2.025$, $A_{\parallel}^{Co}=92.5$ G, and $A_{\parallel}^{N}=13$ G)¹¹⁾ of the corresponding BLM complex. As well as BLM-Co(II) complex, deglyco-BLM-Co(II) complex reacted with dioxygen to form a monomeric dioxygen adduct. The ESR characteristics of the Co(II)-O₂ complex for deglyco-BLM and BLM are similar: the former ($g_{\perp}=2.009$, $g_{\parallel}=2.100$, $A_{\parallel}^{C_0}=22.5$ G, and $A_{\perp}^{C_0}=13.2$ G) and the later ($g_{\perp}=2.007$, $g_{\parallel}=2.098$, $A_{\parallel}^{C_0}=20.2$ G, and $A_{\perp}^{C_0}=12.4$ G).¹¹⁾

Fe(II) complexes of BLM⁷⁾ and deglyco-BLM showed large proton paramagnetic shifts as a result of contact and pseudo-contact effects by the central Fe(II) ion. Table 2 summarizes the proton chemical shifts at 25°C and pD 7.3 in 50 ppm ranges for the Fe(II) complexes of the BLM antibiotics. The present ¹H NMR results provide the following information: (1) the magnitude of the chemical shifts suggests the presence of a highspin Fe(II) ion(S=2) in the Fe(II) complexes of deglyco-BLM and BLM,17) (2) the similarity of the resonances between the BLM-Fe(II) and iso-BLM-Fe(II) complexes appears to reject the Ocarbamoyl group of mannose as a direct ligand toward the Fe(II), (3) the addition of the external base as the fifth coordination ligand to the depyruvamide(dep)-BLM-Fe(II) complex induces proton chemical shifts which are close to those of the BLM-Fe(II) complex, and (4) the magnitude of the chemical shifts in the deglyco-BLM-Fe(II) complex is comparable to that in the BLM-Fe(II) complex, but the resonance lines of the former are fewer than those of the latter. These observations suggest that the sugar moieties of BLM, *iso*-BLM, and dep-BLM are located near the Fe (II)-binding site spatially and the sugar protons experience the paramagnetic effect of the Fe(II). A complete assignment of these resonances will be published elsewhere.

Upon CO binding to deglyco-BLM-Fe(II) and BLM-Fe(II) complexes, the remarkable proton paramagnetic shifts completely disappeared, indicating the presence of a diamagnetic Fe(II) ion(S=0) in these CO adducts. Table 3 shows the proton chemical shifts for selected resonances of deglyco-BLM-Fe(II)-CO complex, together with those of the corresponding BLM complex. The result for BLM-Fe(II)-CO adduct is consistent with those published,⁷⁾ except for the value of the β -hydroxyhistidine C2-H. The present results indicate that (1) deglyco-BLM and BLM form a similar Fe(II)-CO complex and (2) in both the ligands, the primary and secondary amine groups of the β -aminoalanine portion, the pyrimidine ring nitrogen, and the imidazole N-1 of the β -hydroxyhistidine moiety at least participate as coordination groups. It is known that the chemical shifts of the imidazole protons are quite sensitive to any charge present on the ring.^{18,19)} Therefore, it is reasonable that the C2-H values of deglyco-BLM-Fe(II)-CO complex $(Im_2=8.47 \text{ ppm})$ and BLM-Fe(II)-CO complex $(Im_2=8.55 \text{ ppm})$ should be closer to that of the protonated ligands ($Im_2 = ca. 8.7 ppm$) than to that of the neutral ligands ($Im_2 = ca. 7.7 ppm$).

The spin-trapping experiments of deglyco-BLM-Fe(II) complex system at pH 6.9 revealed that the production of hydroxyl radical was clearly lower than that by the corresponding

Fig. 2. Probable structure for Fe(II)-CO adduct complexes of BLM and deglyco-BLM.

BLM system and that the radical spin concentration of the former was estimated to be approximately 43 % of that of the latter.

The present results suggest that the carbamoyl group of the sugar portion in BLM does not directly coordinate to the ferrous ion and that the iron-binding site consists of a rigid 5–5–5–6 ring member chelate coordinated by the nitrogens of the primary and secondary amines, the pyrimidine, the deprotonated peptide and imidazole of the β -hydroxyhistidine. Presumably, the sugar moiety is situated near the Fe(II)-coordination site and plays a role as an environmental factor in the effective oxygen activation and site-specificity of the oxygen radical.

Acknowledgment

We are grateful to Profs. H. TANAKA and K. ISHIZU for pertinent advice and to Drs. I. MORISHIMA and S. OGAWA for ¹H NMR measurements.

> Yukio Sugiura* Tadashi Suzuki

Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan

Yasuhiko Muraoka

Pharmaceutical Division, Nippon Kayaku Co., Ltd., Shimo, Kita-ku, Tokyo 115, Japan

> Yoji Umezawa Tomohisa Takita Hamao Umezawa

Institute of Microbial Chemistry Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received April 8, 1981)

References

- SAUSVILLE, E. A.; R. W. STEIN, J. PEISACH & S. B. HORWITZ: Properties and products of the degradation of DNA by bleomycin and iron (II). Biochemistry 17: 2746~2754, 1978
- TAKITA, T.; Y. MURAOKA, T. NAKATANI, A. FUJII, Y. IITAKA & H. UMEZAWA: Chemistry of bleomycin. XXI. Metal-complex of bleomycin and its implication for the mechanism of bleomycin action. J. Antibiotics 31: 1073~1077, 1978
- 3) KASAI, H.; H. NAGANAWA, T. TAKITA & H.

UMEZAWA: Chemistry of bleomycin. XXII. Interaction of bleomycin with nucleic acids, preferential binding to guanine base and electrostatic effect of the terminal amine. J. Antibiotics 31: 1316~1320, 1978

- POVIRK, L. F.; M. HOGAN & N. DATTAGUPTA: Binding of bleomycin to DNA. Intercalation of the bithiazole rings. Biochemistry 18: 96~101, 1979
- IITAKA, Y.; H. NAKAMURA, T. NAKATANI, Y. MURAOKA, A. FUJII, T. TAKITA & H. UMEZAWA: The X-ray structure determination of P 3A-Cu (II) complex, a biosynthetic intermediate of bleomycin. J. Antibiotics 31: 1070~1072, 1978
- SUGIURA, Y.: Metal coordination core of bleomycin. Comparison of metal complexes between bleomycin and its biosynthetic intermediate. Biochem. Biophys. Res. Commun. 87: 643~648, 1979
- OPPENHEIMER, N. J.; L. O. RODRIGUEZ & S. M. HECHT: Structural studies of "active complex" of bleomycin. Assignment of ligands to the ferrous ion in a ferrous-bleomycin-carbon monoxide complex. Proc. Natl. Acad. Sci. USA 76: 5616 ~ 5620, 1979
- SUGIURA, Y.: Bleomycin-iron complexes. Electron spin resonance study, ligand effect, and implication for action mechanism. J. Am. Chem. Soc. 102: 5208 ~ 5215, 1980
- BURGER, R. M.; J. PEISACH, W. E. BLUMBERG & S. B. HORWITZ: Iron-bleomycin interactions with oxygen and oxygen analogues. J. Biol. Chem. 254: 10906~10912, 1979
- SUGIURA, Y.; K. ISHIZU & K. MIYOSHI: Studies of metallobleomycin by electronic spectroscopy, electron spin resonance spectroscopy and potentiometric titration. J. Antibiotics 32: 453~ 461, 1979
- 11) SUGIURA, Y.: Monomeric cobalt(II)-oxygen adducts of bleomycin antibiotics in aqueous solution. A new ligand type for oxygen binding

and effect of axial Lewis base. J. Am. Chem. Soc. 102: $5216 \sim 5221$, 1980

- 12) MURAOKA, Y.; M. SUZUKI, A. FUJII, Y. UME-ZAWA, H. NAGANAWA, T. TAKITA & H. UME-ZAWA: Chemistry of bleomycin. XXVIII. Preparation of deglyco-bleomycin by mild acid hydrolysis of bleomycin. J. Antibiotics 34: 353~357, 1981
- 13) TAKITA, T.; Y. UMEZAWA, S. SAITO, H. MORI-SHIMA, H. UMEZAWA, Y. MURAOKA, M. SUZUKI, M. OTSUKA, S. KOBAYASHI & M. OHNO: Total synthesis of deglyco-bleomycin A2. Tetrahedron Lett. 22: 671 ~ 674, 1981
- SUGIURA, Y. & K. ISHIZU: Metallobleomycins. Electron spin resonance study on nitrosyl complex of iron(II)-bleomycin. J. Inorg. Biochem. 11: 171~180, 1979
- 15) SUGIURA, Y.; T. TAKITA & H. UMEZAWA: Interaction of bleomycin with nucleic acids as probed by ESR spectrometry of iron(II)-nitrosyl complex of bleomycin. J. Antibiotics 34: 249~ 251, 1981
- 16) KOCH, S.; S. C. TANG, R. H. HOLM & R. B. FRANKEL: Synthesis and ground state electronic properties of tetraaza macrocyclic iron (II, III) complexes containing [14]-, [15]-, and [16]membered rings. J. Am. Chem. Soc. 97: 6714~ 6723, 1975
- SUGIURA, Y.; S. OGAWA & I. MORISHIMA: Unusual interaction of iron-bleomycin with cyanide. J. Am. Chem. Soc. 102: 7944~7945, 1980
- 18) TEMUSSI, P. A. & A. VITAGLIANO: Model ligands for copper proteins. Proton magnetic resonance study of acetylhistamine and acetylhistidine complexes with copper(I). J. Am. Chem. Soc. 97: 1572~1575, 1975
- SUGIURA, Y.: Proton-magnetic-resonance study of copper(I) complexes with peptides containing sulfhydryl and imidazole groups as possible model ligands for copper proteins. Eur. J. Biochem. 78: 431~435, 1977